Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Towards a monolithically integrated III-V laser on silicon: optimization of multi-quantum well growth on InP on Si

Identifieur interne : 000303 ( Main/Repository ); précédent : 000302; suivant : 000304

Towards a monolithically integrated III-V laser on silicon: optimization of multi-quantum well growth on InP on Si

Auteurs : RBID : Pascal:14-0004185

Descripteurs français

English descriptors

Abstract

High-quality InGaAsP/InP multi-quantum wells (MQWs) on the isolated areas of indium phosphide on silicon necessary for realizing a monolithically integrated silicon laser is achieved. Indium phosphide layer on silicon, the pre-requisite for the growth of quantum wells is achieved via nano-epitaxial lateral overgrowth (NELOG) technique from a defective seed indium phosphide layer on silicon. This technique makes use of epitaxial lateral overgrowth (ELOG) from closely spaced (1 μm) e-beam lithography-patterned nano-sized openings (∼300 nm) by low-pressure hydride vapor phase epitaxy. A silicon dioxide mask with carefully designed opening patterns and thickness with respect to the opening width is used to block the defects propagating from the indium phosphide seed layer by the so-called necking effect. Growth conditions are optimized to obtain smooth surface morphology even after coalescence of laterally grown indium phosphide from adjacent openings. Surface morphology and optical properties of the NELOG indium phosphide layer are studied using atomic force microscopy, cathodoluminescence and room temperature μ-photoluminescence (μ-PL) measurements. Metal organic vapor phase epitaxial growth of InGaAsP/InP MQWs on the NELOG indium phosphide is conducted. The mask patterns to avoid loading effect that can cause excessive well/barrier thickness and composition change with respect to the targeted values is optimized. Cross-sectional transmission electron microscope studies show that the coalesced NELOG InP on Si is defect-free. PL measurement results indicate the good material quality of the grown MQWs. Microdisk (MD) cavities are fabricated from the MQWs on ELOG layer. PL spectra reveal the existence of resonant modes arising out of these MD cavities. A mode solver using finite difference method indicates the pertinent steps that should be adopted to realize lasing.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0004185

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Towards a monolithically integrated III-V laser on silicon: optimization of multi-quantum well growth on InP on Si</title>
<author>
<name sortKey="Kataria, H" uniqKey="Kataria H">H. Kataria</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, KTH- Royal Institute of Technology, Electrum 229</s1>
<s2>16440, Kista</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>16440, Kista</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Junesand, C" uniqKey="Junesand C">C. Junesand</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, KTH- Royal Institute of Technology, Electrum 229</s1>
<s2>16440, Kista</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>16440, Kista</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, KTH- Royal Institute of Technology, Electrum 229</s1>
<s2>16440, Kista</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>16440, Kista</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Metaferia, W" uniqKey="Metaferia W">W. Metaferia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, KTH- Royal Institute of Technology, Electrum 229</s1>
<s2>16440, Kista</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>16440, Kista</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sun, Y T" uniqKey="Sun Y">Y. T. Sun</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, KTH- Royal Institute of Technology, Electrum 229</s1>
<s2>16440, Kista</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>16440, Kista</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lourdudoss, S" uniqKey="Lourdudoss S">S. Lourdudoss</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, KTH- Royal Institute of Technology, Electrum 229</s1>
<s2>16440, Kista</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>16440, Kista</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Patriarche, G" uniqKey="Patriarche G">G. Patriarche</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Photonique et de Nanostructures (CNRS UPR 20), Route de Nozay</s1>
<s2>91460 Marcousis</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Marcousis</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bazin, A" uniqKey="Bazin A">A. Bazin</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Photonique et de Nanostructures (CNRS UPR 20), Route de Nozay</s1>
<s2>91460 Marcousis</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Marcousis</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Raineri, F" uniqKey="Raineri F">F. Raineri</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Laboratoire de Photonique et de Nanostructures (CNRS UPR 20), Route de Nozay</s1>
<s2>91460 Marcousis</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Marcousis</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mages, P" uniqKey="Mages P">P. Mages</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electrical and Computer Engineering, University of California</s1>
<s2>Santa Barbara, CA 93106</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Santa Barbara, CA 93106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Julian, N" uniqKey="Julian N">N. Julian</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electrical and Computer Engineering, University of California</s1>
<s2>Santa Barbara, CA 93106</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Santa Barbara, CA 93106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bowers, J E" uniqKey="Bowers J">J. E. Bowers</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Electrical and Computer Engineering, University of California</s1>
<s2>Santa Barbara, CA 93106</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Santa Barbara, CA 93106</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0004185</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0004185 INIST</idno>
<idno type="RBID">Pascal:14-0004185</idno>
<idno type="wicri:Area/Main/Corpus">000366</idno>
<idno type="wicri:Area/Main/Repository">000303</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Electron beam lithography</term>
<term>Finite difference method</term>
<term>Gallium Indium Arsenides phosphides Mixed</term>
<term>Indium phosphide</term>
<term>Low pressure</term>
<term>Monolithic integrated circuit</term>
<term>Multiple quantum well</term>
<term>Nanopatterning</term>
<term>Nanostructure</term>
<term>Photoluminescence</term>
<term>Quantum well lasers</term>
<term>Thickness</term>
<term>VPE</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Lithographie faisceau électron</term>
<term>Formation nanomotif</term>
<term>Basse pression</term>
<term>Epitaxie phase vapeur</term>
<term>Epaisseur</term>
<term>Méthode différence finie</term>
<term>Laser puits quantique</term>
<term>Microscopie force atomique</term>
<term>Gallium Indium Phosphoarséniure Mixte</term>
<term>Circuit intégré monolithique</term>
<term>Phosphure d'indium</term>
<term>Puits quantique multiple</term>
<term>Nanostructure</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-quality InGaAsP/InP multi-quantum wells (MQWs) on the isolated areas of indium phosphide on silicon necessary for realizing a monolithically integrated silicon laser is achieved. Indium phosphide layer on silicon, the pre-requisite for the growth of quantum wells is achieved via nano-epitaxial lateral overgrowth (NELOG) technique from a defective seed indium phosphide layer on silicon. This technique makes use of epitaxial lateral overgrowth (ELOG) from closely spaced (1 μm) e-beam lithography-patterned nano-sized openings (∼300 nm) by low-pressure hydride vapor phase epitaxy. A silicon dioxide mask with carefully designed opening patterns and thickness with respect to the opening width is used to block the defects propagating from the indium phosphide seed layer by the so-called necking effect. Growth conditions are optimized to obtain smooth surface morphology even after coalescence of laterally grown indium phosphide from adjacent openings. Surface morphology and optical properties of the NELOG indium phosphide layer are studied using atomic force microscopy, cathodoluminescence and room temperature μ-photoluminescence (μ-PL) measurements. Metal organic vapor phase epitaxial growth of InGaAsP/InP MQWs on the NELOG indium phosphide is conducted. The mask patterns to avoid loading effect that can cause excessive well/barrier thickness and composition change with respect to the targeted values is optimized. Cross-sectional transmission electron microscope studies show that the coalesced NELOG InP on Si is defect-free. PL measurement results indicate the good material quality of the grown MQWs. Microdisk (MD) cavities are fabricated from the MQWs on ELOG layer. PL spectra reveal the existence of resonant modes arising out of these MD cavities. A mode solver using finite difference method indicates the pertinent steps that should be adopted to realize lasing.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>28</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Towards a monolithically integrated III-V laser on silicon: optimization of multi-quantum well growth on InP on Si</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>SPECIAL ISSUE ON III-V SEMICONDUCTOR DEVICES INTEGRATED WITH SILICON</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KATARIA (H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JUNESAND (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WANG (Z.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>METAFERIA (W.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SUN (Y. T.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LOURDUDOSS (S.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PATRIARCHE (G.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>BAZIN (A.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>RAINERI (F.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>MAGES (P.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>JULIAN (N.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>BOWERS (J. E.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>HOPKINSON (Mark)</s1>
<s9>limin.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>MARTIN (Trevor)</s1>
<s9>limin.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>SMOWTON (Peter)</s1>
<s9>limin.</s9>
</fA12>
<fA14 i1="01">
<s1>Laboratory of Semiconductor Materials, KTH- Royal Institute of Technology, Electrum 229</s1>
<s2>16440, Kista</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Laboratoire de Photonique et de Nanostructures (CNRS UPR 20), Route de Nozay</s1>
<s2>91460 Marcousis</s2>
<s3>FRA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electrical and Computer Engineering, University of California</s1>
<s2>Santa Barbara, CA 93106</s2>
<s3>USA</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Sheffield</s1>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>QinetiQ</s1>
<s3>GBR</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>Cardiff University</s1>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s2>094008.1-094008.7</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000501548560080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>25 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0004185</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>High-quality InGaAsP/InP multi-quantum wells (MQWs) on the isolated areas of indium phosphide on silicon necessary for realizing a monolithically integrated silicon laser is achieved. Indium phosphide layer on silicon, the pre-requisite for the growth of quantum wells is achieved via nano-epitaxial lateral overgrowth (NELOG) technique from a defective seed indium phosphide layer on silicon. This technique makes use of epitaxial lateral overgrowth (ELOG) from closely spaced (1 μm) e-beam lithography-patterned nano-sized openings (∼300 nm) by low-pressure hydride vapor phase epitaxy. A silicon dioxide mask with carefully designed opening patterns and thickness with respect to the opening width is used to block the defects propagating from the indium phosphide seed layer by the so-called necking effect. Growth conditions are optimized to obtain smooth surface morphology even after coalescence of laterally grown indium phosphide from adjacent openings. Surface morphology and optical properties of the NELOG indium phosphide layer are studied using atomic force microscopy, cathodoluminescence and room temperature μ-photoluminescence (μ-PL) measurements. Metal organic vapor phase epitaxial growth of InGaAsP/InP MQWs on the NELOG indium phosphide is conducted. The mask patterns to avoid loading effect that can cause excessive well/barrier thickness and composition change with respect to the targeted values is optimized. Cross-sectional transmission electron microscope studies show that the coalesced NELOG InP on Si is defect-free. PL measurement results indicate the good material quality of the grown MQWs. Microdisk (MD) cavities are fabricated from the MQWs on ELOG layer. PL spectra reveal the existence of resonant modes arising out of these MD cavities. A mode solver using finite difference method indicates the pertinent steps that should be adopted to realize lasing.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03G02C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photoluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fotoluminiscencia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Lithographie faisceau électron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electron beam lithography</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Litografía haz electrón</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Formation nanomotif</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nanopatterning</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Formacíon nanomotivo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Basse pression</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Low pressure</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Baja presión</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>VPE</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Méthode différence finie</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Finite difference method</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Método diferencia finita</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Laser puits quantique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Quantum well lasers</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Gallium Indium Phosphoarséniure Mixte</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Gallium Indium Arsenides phosphides Mixed</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Galio Indio Fosfoarseniuro Mixto</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Circuit intégré monolithique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Monolithic integrated circuit</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Circuito integrado monolítico</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Nanostructure</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Nanostructure</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Nanoestructura</s0>
<s5>21</s5>
</fC03>
<fN21>
<s1>006</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000303 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000303 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0004185
   |texte=   Towards a monolithically integrated III-V laser on silicon: optimization of multi-quantum well growth on InP on Si
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024